
M3triCity: Visualizing Evolving Software & Data Cities
Susanna Ardigò, Csaba Nagy, Roberto Minelli, Michele Lanza

REVEAL @ Software Institute – USI, Lugano

ABSTRACT
The city metaphor for visualizing software systems in 3D has
been widely explored and has led to many diverse implemen-
tations and approaches. Common among all approaches is a
focus on the software artifacts, while the aspects pertaining to
the data and information (stored both in databases and files)
used by a system are seldom taken into account.

We present M3TRICITY, an interactive web application
whose goal is to visualize object-oriented software systems,
their evolution, and the way they access data and information.
We illustrate how it can be used for program comprehension
and evolution analysis of data-intensive software systems.

Demo video URL: https://youtu.be/uBMvZFIlWtk

CCS CONCEPTS
• Software and its engineering;

KEYWORDS
Software and data visualization, Program comprehension

ACM Reference Format:
Susanna Ardigò, Csaba Nagy, Roberto Minelli, Michele Lanza. 2022.
M3triCity: Visualizing Evolving Software & Data Cities. In 44th In-
ternational Conference on Software Engineering Companion (ICSE ’22
Companion), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3510454.3516831

1 INTRODUCTION
Program comprehension is a fundamental activity for software
maintenance and evolution. Developers spend considerably
more time reading and understanding existing code rather
than writing new code [12]. Software visualization is a popu-
lar technique to perform program comprehension [19]. Many
techniques have been proposed, ranging from simple 2D dis-
plays, such as polymetric views [8] and UML diagrams to
more complex 3D techniques, even extending into the realm
of virtual (VR) and augmented reality (AR) [3, 10, 13].

We present M3TRICITY a web application that visualizes
software systems in 3D, focusing on the evolution of systems
and how they use and access data [1, 17]. M3TRICITY lever-
ages the city metaphor [4, 6, 15, 16, 20, 21] in the vein of
CODECITY [24] and runs on any modern web browser.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9223-5/22/05. . . $15.00
https://doi.org/10.1145/3510454.3516831

2 M3TRICITY IN A NUTSHELL
In a nutshell, M3TRICITY is a web-based evolution of CODECITY,
which popularized the city-based visualization of software
systems through the city metaphor [23] (See Figure 1).

Figure 1: CodeCity and the City Metaphor

In CODECITY every class is visualized as a building with
metrics mapped onto the base, height, and color, while pack-
ages were visualized as nested districts. M3TRICITY expands
on it through a number of features and concepts, namely: (i) it
distinguishes between the file types and uses different glyphs
(i.e., depictions) for them, as we see in Figure 2.

code-building datafile-cylinder binary-hemisphere table-cylinder

Figure 2: The Glyphs Used by M3triCity

Furthermore, (ii) it takes the evolution of a system into
account for the layout of the city structure, as we detail in
Section 2.4; (iii) it infers and visualizes the databases used by a
system, as we detail in Section 2.2, and (iv) it provides higher
accessibility by being publicly available as a web application
available at https://metricity.si.usi.ch/v2.

2.1 The User Interface of M3triCity
Figure 3 shows the main user interface of M3TRICITY. At
the center we see the software city A , with folders and files
represented as buildings and nested districts. Above the city
the sky is used to visualize the (inferred) database(s) and
their tables B , where connecting lines represent the accesses
performed from the source code.

https://youtu.be/uBMvZFIlWtk
https://doi.org/10.1145/3510454.3516831
https://doi.org/10.1145/3510454.3516831
https://metricity.si.usi.ch/v2

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Ardigò et al.

1 2

3

5

4

6

B

A

C

Figure 3: The Main Page of M3triCity

Repository

ClassHistory DataFileHistory BinaryHistory PackageHistory RepositoryHistory DatabaseHistory TableHistory

ClassVersion DataFileVersion BinaryVersion TableVersionPackageVersion RepositoryVersion DatabaseVersion TableAccess

belongsToPackage
0..* 0..* 0..* 1

hasVersion hasVersion hasVersion hasVersion hasVersion hasVersion hasVersion

belongsToPackage belongsToPackage
accessesClass

belongsToRepository belongsToDB accessesTable
1 0..*

hasClass hasDataFile hasBinary hasPackage hasSnapshot hasDatabase hasTable hasTableAccess

1 0..* 1 0..* 0..*1

1 1 1 1 1 1 1

1

1..* 1..*0..* 0..* 1..* 0..* 0..*

0..*1..* 1..* 1..* 1..* 1..* 1..* 1..*

belongsToRepository
1..*

Figure 4: The Evolution Model of M3triCity

Various information about the system being visualized 1
is also displayed 2 . As M3TRICITY is geared towards evolu-
tion comprehension, additional panels provide information
about the currently visualized commit 3 4 . To facilitate mov-
ing through time M3TRICITY provides a control panel 5 to
easily moving forward/backward between different commits
as well as fast back/forwarding and pausing. A timeline at
the bottom 6 provides a global overview of the system evo-
lution with additional details pertaining to the commits (i.e.,
along the timeline), as well as instantaneous access to a spe-
cific place in the commit history. The whole city can be rotated,
the user can also change its point of view and zoom in and
out. Structural changes (i.e., moving of entities) are depicted
using yellow curved arcs (see top left annotation with black
dots C). When the user clicks on an artifact, it is highlighted
both in the main visualization as well as along the timeline,
denoting all commits in which the entity was involved. More
customizations are also available in the settings panel.

2.2 Modeling Evolving Data-Intensive Systems
Figure 4 depicts the meta-model of M3TRICITY. Evolving soft-
ware artifacts are modeled using “histories” in the vein of
Girba’s evolution meta-model [5]. For each artifact history,
we model each version including binary files and data files
(e.g., JSON, XML). Databases are inferred through SQLIN-
SPECT [14]. For each entity, M3TRICITY computes various
metrics, summarized in Table 1.

Entity Metric Name Entity Metric Name

Class

Instance Variables

Data File

Entities
For Loops # Entity Types
Methods Max # Properties per Entity
Lines of Code Max Nesting Level

Table # Columns Binary Size
Table Accesses

Table 1: The Metrics Supported by M3triCity

M3triCity: Visualizing Evolving Software & Data Cities ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

2.3 Architecture
Figure 5 shows the architecture of M3TRICITY.

Back End

Layout Constructor

City Creator

Database Helper

Front End

/history/start

Database

load

{meshes […], …}

Back End

Repository
Downloader

Commit Analyzer

History Linker
SQLInspect

Source files

clone

analyze

getTableAccesses

getMetrics

clone

getDBSchema

Front End

/analyze

Database

persist

R
ep

os
ito

ry
 A

na
ly

si
s

C
ity

 V
is

ua
liz

at
io

n

Figure 5: The Architecture of M3triCity

The frontend of M3TRICITY is implemented in TypeScript.1

It uses Vue.js2 for the user interface. The 3D visualization
is created using Babylon.js.3 The backend is a Spring Boot 4

application implemented using Java 115 and Gradle 6.6

To start the analysis, the user indicates the URL of a repos-
itory and, as an optional parameter, the database type. The
frontend contacts the backend through the public REST API
endpoint analyze. The execution starts in the module Repos-
itory Downloader which contacts git to clone the repository.
The Commit Analyzer module iterates through all files of each
snapshot of the given repository in chronological order, clas-
sifies them, analyzes them and then extracts the metrics. The
project uses SQLINSPECT [14] to reverse engineer the schema
of the database and the interactions with the source code. The
histories of the entities are created by linking the versions. At
last, all information is persisted in a MongoDB database.

2.4 Usage
The user starts the visualization of a city by selecting a pro-
cessed repository. The repository-related information is loaded
from the database with the Database Helper component. The
computation of the city layout is handled by the Layout Con-
structor component which iterates through all the entities
of the city. M3TRICITY considers evolution as a first-class
citizen, implementing a history-resistant layout, which allo-
cates a dedicated position to each artifact throughout the life-
time [17]. The City Creator module creates the meshes infor-
mation that are then sent to the frontend which renders them
as 3D meshes.
1See https://www.typescriptlang.org
2See https://vuejs.org
3See https://www.babylonjs.com
4See https://spring.io/projects/spring-boot
5See https://docs.oracle.com/en/java/javase/11/docs/api/
6See https://docs.gradle.org/6.3/release-notes.html

3 SOFTWARE CITY TALES
We illustrate how M3TRICITY can be used to comprehend the
evolution of a system, by using the GNUCASH-ANDROID7

Android companion app of the GNUCASH accounting pro-
gram as an example. GNUCASH-ANDROID allows recording
transactions on-the-go to import the data into GNUCASH later.
The main branch of the project is composed of 1,730 commits
by 46 contributors. Figure 6 shows six M3TRICITY snapshots
in the overall evolution.

(a) 13 May 2021 at 19:27 (b) 4 November 2012 at 17:20

(c) 31 January 2013 at 00:29 (d) 18 September 2015 at 19:06

(e) 28 December 2015 at 10:06 (f) 2 December 2020 at 08:13

Figure 6: The Evolution of GnuCash-Android

May 13 2012: GnuCash-Android is born (Figure 6a). On
May 13, 2012, Ngewi Fet creates the project repository with
83 Java classes, 85 data files, and 243 binaries. The source
code is mainly located in the com_actionbarsherlock package,
nicely divided into sub-packages. The res folder contains
three districts of images and several districts of data files.
Separately, the module GnucashMobile has one Java class,
four data files, and some binaries.

Nov 4 2012: The database is created (Figure 6b). The devel-
opers added a database which is being used by a part of the
system that has been added in the meantime. Test classes are
growing as well. Data files have been added, mostly related
to text constants that need to be displayed.

Jan 31 2013: GnuCash-Android undergoes a major restruc-
turing (Figure 6c). Almost 450 files are deleted, and 220 are
moved with the renaming of the folder GnucashMobile to app.
The database-related classes are still present but the accesses
to the tables are removed.

7See https://github.com/codinguser/gnucash-android

https://www.typescriptlang.org
https://vuejs.org
https://www.babylonjs.com
https://spring.io/projects/spring-boot
https://docs.oracle.com/en/java/javase/11/docs/api/
https://docs.gradle.org/6.3/release-notes.html
https://github.com/codinguser/gnucash-android

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Ardigò et al.

Sep 18 2015: Controlled evolution (Figure 6d). Fast for-
warding 2 years, the system keeps evolving: the test suite is
expanded, the developers started working on a user interface
module. The database co-evolves with the system, with the
addition and quick deletion of tables.

Dec 28 2015: Extending the tests (Figure 6e). The system
evolves mostly with new tests.

Dec 2 2020: Fast forward (Figure 6f). Five years later the
system has grown considerably, with some classes reaching
considerable size in terms of variables and methods. Data file
districts have been added, complementing systematic data-
base accesses on a well-organized DB featuring the three major
tables transactions, splits, and scheduled_actions.

4 RELATED WORK
Since the seminal works of Reiss [18] and Young & Munro
[25], many approaches to visualize software systems in 3D
have been explored. The cities metaphor has been widely used
and led to diverse implementations, such as the SOFTWARE
WORLD by Knight et al. [6], the visualization of communi-
cating architectures by Panas et al. [15], VERSO by Langelier
et al. [7], CODECITY by Wettel et al. [23, 24], EVO-STREETS
by Steinbrückner & Lewerentz [20], CODEMETROPOLIS by
Balogh & Beszedes [2], and VR CITY by Vincur et al. [22].

Only a few approaches considered presenting data(bases)
together with the source code, mostly using the city metaphor.
Meurice and Cleve presented DAHLIA to visualize database
schema evolution [11], which uses the city metaphor where
buildings in the city represent database tables. Zirkelbach and
Hasselbring presented RACCOON [26], which uses the 3D
city metaphor to show the structure of a database based on
entity-relationship diagrams. Marinescu presented a meta-
model containing object-oriented entities, relational entities
and object-relational interactions [9]. M3TRICITY does not
separate source code and data(bases), like existing approaches,
but it shows them with their interactions in the same city.

5 CONCLUSION
M3TRICITY extends the original city metaphor by considering
an important aspect that has been ignored up to now: the data.

Our tool visualizes object-oriented software systems, their
evolution, and the way they access data and information.
M3TRICITY expands the original city metaphor by adding
a number of features and concepts: using different glyphs to
distinguish between the various file types, taking software
evolution into account to layout the city, inferring and visual-
izing the databases used by a system, and providing higher
accessibility by being publicly available as a web application.

To demonstrate the usefulness of our approach, we illus-
trate how M3TRICITY can be used to comprehend the evolu-
tion of a data-intensive system: GNUCASH-ANDROID.

ACKNOWLEDGMENTS
We acknowledge the financial support of the Swiss National
Science Foundation and the Fonds de la Recherche Scientifique
for the project “INSTINCT” (SNF Project No. 190113).

REFERENCES
[1] Susanna Ardigò, Csaba Nagy, Roberto Minelli, and Michele Lanza. 2021.

Visualizing Data in Software Cities. In Working Conference on Software
Visualization, VISSOFT 2021. IEEE, 145–149.

[2] Gergő Balogh and Arpad Beszedes. 2013. CodeMetropolis - code visualisa-
tion in MineCraft. In Proc. 13th Int. Working Conf. Source Code Analysis and
Manipulation. IEEE Computer Society, 136–141.

[3] Florian Fittkau, Alexander Krause, and Wilhelm Hasselbring. 2015. Ex-
ploring software cities in virtual reality. In 3rd IEEE Working Conference on
Software Visualization, VISSOFT. IEEE Computer Society, 130–134.

[4] Florian Fittkau, Jan Waller, Christian Wulf, and Wilhelm Hasselbring. 2013.
Live trace visualization for comprehending large software landscapes:
The ExplorViz approach. In 2013 First IEEE Working Conference on Software
Visualization (VISSOFT). IEEE Computer Society, 1–4.

[5] Tudor Adrian Girba. 2005. Modeling history to understand software evolution.
Ph.D. Dissertation. University of Bern.

[6] Claire Knight and Malcolm Munro. 2000. Virtual but visible software. In
Proc. 17th Int. Conf. Information Visualization. IEEE, 198–205.

[7] Guillaume Langelier, Houari Sahraoui, and Pierre Poulin. 2005.
Visualization-based Analysis of Quality for Large-scale Software Systems.
In Proc. 20th Int. Conf. Automated Software Engineering. ACM, 214–223.

[8] Michele Lanza and Stéphane Ducasse. 2003. Polymetric Views - A Light-
weight Visual Approach to Reverse Engineering. IEEE Trans. Software Eng.
29, 9 (2003), 782–795.

[9] Cristina Marinescu. 2019. Applications of Automated Model’s Extraction
in Enterprise Systems. In Proc. 14th Int. Conf. Software Technologies (ICSOFT
2019). SCITEPRESS, 254–261.

[10] Leonel Merino, Alexandre Bergel, and Oscar Nierstrasz. 2018. Overcoming
Issues of 3D Software Visualization through Immersive Augmented Reality.
In Working Conf. on Software Visualization, VISSOFT. IEEE, 54–64.

[11] Loup Meurice and Anthony Cleve. 2016. DAHLIA 2.0: A Visual Analyzer
of Database Usage in Dynamic and Heterogeneous Systems. In Proc. 2016
Working Conf. Software Visualization (VISSOFT). IEEE, 76–80.

[12] Roberto Minelli, Andrea Mocci, and Michele Lanza. 2015. I know what
you did last summer-an investigation of how developers spend their time.
In 23rd International Conference on Program Comprehension. IEEE, 25–35.

[13] David Moreno-Lumbreras, Roberto Minelli, Andrea Villaverde, Jesús M
González-Barahona, and Michele Lanza. 2021. CodeCity: On-Screen or in
Virtual Reality?. In VISSOFT 2021. IEEE, 12–22.

[14] Csaba Nagy and Anthony Cleve. 2018. SQLInspect: a static analyzer to
inspect database usage in Java applications. In 40th International Conference
on Software Engineering: Companion Proceedings, ICSE. ACM, 93–96.

[15] Thomas Panas, R. Berrigan, and John Grundy. 2003. A 3D metaphor
for software production visualization. In Proc. 7th Int. Conf. Information
Visualization. IEEE Computer Society, 314 – 319.

[16] Thomas Panas, Thomas Epperly, Daniel J. Quinlan, Andreas Sæbjørnsen,
and Richard W. Vuduc. 2007. Communicating Software Architecture using
a Unified Single-View Visualization. In Proc. 12th Int. Conf. Engineering
Complex Computer Systems. IEEE Computer Society, 217–228.

[17] Federico Pfahler, Roberto Minelli, Csaba Nagy, and Michele Lanza. 2020.
Visualizing Evolving Software Cities. In Proceedings of VISSOFT 2020 (8th
Working Conference on Software Visualization). IEEE CS Press, 22–26.

[18] Steven P. Reiss. 1995. An Engine for the 3D Visualization of Program
Information. J. Visual Languages & Computing 6, 3 (1995), 299–323.

[19] John T. Stasko, Marc H. Brown, and Blaine A. Price. 1997. Software Visual-
ization. MIT Press.

[20] Frank Steinbrückner and Claus Lewerentz. 2010. Representing develop-
ment history in software cities. In Proceedings of the ACM 2010 Symposium
on Software Visualization. ACM, 193–202.

[21] Yuriy Tymchuk, Andrea Mocci, and Michele Lanza. 2015. ViDI: The Visual
Design Inspector. In 37th IEEE/ACM International Conference on Software
Engineering, ICSE. IEEE Computer Society, 653–656.

[22] Juraj Vincur, Pavol Návrat, and Ivan Polásek. 2017. VR City: Software
Analysis in Virtual Reality Environment. In Proc. Int. Conf. Software Quality,
Reliability and Security Companion. IEEE Computer Society, 509–516.

[23] Richard Wettel and Michele Lanza. 2007. Visualizing Software Systems as
Cities. In Proc. 4th Int. Workshop on Visualizing Software for Understanding
and Analysis. IEEE Computer Society, 92–99.

[24] Richard Wettel and Michele Lanza. 2008. CodeCity: 3D Visualization
of Large-Scale Software. In Proceedings of ICSE 2008 (30th International
Conference on Software Engineering). ACM Press, 921–922.

[25] Peter Young and Malcolm Munro. 1998. Visualizing Software in Virtual
Reality. In 6th International Workshop on Program Comprehension (IWPC ’98),
June 24-26, 1998, Ischia, Italy. IEEE Computer Society, 19–26.

[26] Christian Zirkelbach and Wilhelm Hasselbring. 2019. Live Visualization of
Database Behavior for Large Software Landscapes: The RACCOON Approach.
Technical Report. Department of Computer Science, Kiel University.

	Abstract
	1 Introduction
	2 M3triCity in a Nutshell
	2.1 The User Interface of M3triCity
	2.2 Modeling Evolving Data-Intensive Systems
	2.3 Architecture
	2.4 Usage

	3 Software City Tales
	4 Related Work
	5 Conclusion
	Acknowledgments
	References

